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ABSTRACT 

Integral Doppler anemometry (IDA) is applied in analytical field-flow fractionation (FFF) of particles by registering the transverse 
concentration profiles of particle mixtures in FFF channels. Several applications of IDA in FFF are considered. First, its use in FFF 
systems with a linear focusing force is discussed, for two qualitatively different schemes: (a) a conventional FFF scheme with a single 
probe injection; and (b) a laterally non-equilibrium, time-independent scheme with a steady-state particle concentration at the channel 
inlet. In the conventional scheme IDA allows direct and precise measurements of the equilibrium focusing positions of fractions and, if 
necessary, the registration of the usual elution curve. In the stationary non-equilibrium regime it allows the analysis time and channel 
length to be decreased considerably compared with the conventional FFF regime. Second, the possibility of IDA measurements of the 
lateral field geometry and intensity inside FFF channels by registering the characteristic trajectories of test particles is shown theoret- 
ically and experimentally. The specially developed kinematic formalism valid in the case of large transverse Peclet numbers, i.e., for 
strong enough fields and/or large enough particles, is used. It allows the time-dependent concentration distribution of particles in a flat 
channel flow with a lateral force applied (FFF conditions) to be obtained analytically for arbitrary profiles of velocity and force 
immediately following the probe injection. 

INTRODUCTION 

Field-flow fractionation (FFF) has become a well 
established technique for the analysis and separa- 
tion of particle mixtures [1,2]. Analytical fractiona- 
tion is done by registering the particle concentration 
profiles with time along the channel axis near its 
outlet. However, long before the axial profiles are 
formed, the quasi-equilibrium transverse concentra- 
tion profiles of fractions are established across the 
channel. These profiles can be measured using 
integral Doppler anemometry (IDA), recently devel- 
oped and applied in analytical FFF [3-71. It has been 
demonstrated experimentally [6,7] that the use of 
IDA opens up the possibility of a considerable 
decrease in the analysis time and the channel length. 
It also enables a conceptually new approach in 
analytical FFF, the detection of fractions even 
during their lateral equilibration (IDA-FFF) [6], to 
be implemented. The most advantageous approach 

is the use of IDA in focusing FFF [4]. In previous 
papers [4,6,7], the basic principles of IDA-FFF were 
formulated, the necessary theory was developed and 
feasibility experiments on IDA-FFF were done. 
These experiments demonstrated the IDA fractiona- 
tion of particles under stationary, laterally non- 
equilibrium conditions in FFF channels, using the 
intrinsic hydrodynamic focusing force alone [6] and 
in combination with another force (gravity) [7]. 

In this paper, other promising applications of 
IDA in FFF are considered theoretically and experi- 
mentally: (1) analytical IDA-FFF of particles in a 
flat channel with a linear, focusing force, both for 
time-dependent and time-independent particle con- 
centration distributions in a flow; (2) the use of the 
integral Doppler anemometer as a conventional 
particle detector at the outlet of a channel in a 
standard scheme of focusing FFF; and (3) the 
measurements of the spatial characteristics of the 
lateral field and the calibration of FFF channels by 
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means of IDA and the test particles in a flow. The 
analysis is based on the kinematic formalism, which 
is developed below for the theoretical description of 
the FFF process in the case of sufficiently large 
particles and/or strong enough lateral fields. The 
main advantages of this formalism are that it gives 
the analytical expressions for the time-dependent 
concentration distribution of particles in a flat 
channel for arbitrary profiles of flow velocity and 
lateral force starting from the moment in time 
immediately after the probe injection. 

GENERAL RELATIONSHIPS 

Previous IDA-FFF experiments [6,7] showed a 
very promising possibility of analytical fractiona- 
tion of particles under essentially non-equilibrium 
lateral conditions, i.e., at the very early stages of the 
classical FFF process. This raises once again the old 
problem of the detailed description of particle 
concentration distributions in a flow during the 
initial or relaxation stage of FFF [2]. Extensive work 
has been done on this problem [8-121 and has been 
reviewed [2], resulting, in particular, in calculation 
of the appropriate relaxation terms in the expres- 
sions for the retention ratio R and the zone-spread- 
ing parameter H. These two quantities are among 
the main parameters of the classical FFF scheme, 
but for IDA-FFF the transient (non-equilibrium) 
lateral concentration profiles are of primary interest. 
This is due to the essence of IDA-FFF, in which the 
fractions are detected via registering their transverse 
concentration profiles. 

A comprehensive description of the FFF process 
is possible using the convective diffusion equation, 
which gives the particle concentration distribution 
in the channel as a function of time [11,12]. How- 
ever, the mathematical complexity of this equation 
leads to tedious numerical calculations [ 1 I, 121, 
which greatly impedes its practical use. The situation 
is simplified in the case of sufficiently strong lateral 
fields and/or sufficiently large particles (the high 
value of the transverse Peclet number [2] is essential). 
Here the transformation of the particle concentra- 
tion distribution along and across the channel is 
governed mainly by the kinematic trajectories of 
particles. The diffusive smearing of these trajectories 
can be neglected during a considerable period of 
time, especially in the view of their spread due to the 

polydispersity of any real particle system. These 
features allow the use of the kinematic (non-diffu- 
sive) approach in the FFF theory. It has been used 
successfully for the description of stationary non- 
equilibrium IDA-FFF [6,7]. 

In this paper a more general formalism is devel- 
ope, which allows the kinematic analysis of time- 
dependent situations also. Let us consider the lam- 
inar flow of a dilute suspension of spherical particles 
of radius a in a flat channel of width 2h in the 
presence of some lateral force. We choose the 
dimensionless coordinate system in units of h, with 
the z axis along the flow, the x axis perpendicular to 
the channel walls and the origin in the middle of a 
channel. In the kinematic approximation the con- 
vective diffusion equation is reduced to the time- 
dependent continuity equation: 

ac(x,z,t) 
at 

+ div[C(x,z,t) . ~(.x,z)] = 0 

where C(n,z,t) is the particle concentration and 
G(x,z) is the particle velocity. We assume the longi- 
tudinal component of G to coincide with the local 
flow velocity and the lateral component to be 
determined by the transverse force according to the 
Stokes law. Let FO. ljli be the characteristic values, 
and V(X), U(X) be the dimensionless lateral profiles of 
the external force and the flow velocity. Then, 

v,(x) = F” -q(x); 
6nqu 

VI = 0; v,(x) = vj . u(x) (2) 

where q is the fluid viscosity. Inserting eqn. 2 into 
eqn. 1 and solving the partial differential equation 
arising by the characteristics method [6] with the 
initial conditions C- = Co(~~o,zo), x = .x0, z = zO at 
t = 0, we obtain 

dxo> 
C(x,z,t) = C&o,ro)~ - 

&) 
.O(l + x0). @(I - x0) 

(34 

s dt 
t=y a z = z. + p 

s 
adi”; 
V(5) 

i-l= 
67~~ II hi 

F. =pe, (3b) 

where Pe1, and PeL are the longitudinal and trans- 
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verse Peclet numbers, respectively [2], and O(x) = 1 
for x 2 0, O(x) = 0 for x < 0 is the step function. 
The dimensionless time t 2 0 is expressed in the 
units of (h/v,,). The variables x0 and z. in eqn. 3a are 
connected with x,z,t by eqns. 3b. In the case of the 
stationary (time-independent) concentration distri- 
bution considered previously [6], eqn. 1 lacks the 
time derivative X/at, so the first of eqns. 3b is 
absent, while the second eqn. 3b interconnects the 
variables x, x0 and z. 

Eqns. 3 are simple and have great generality, 
being written for arbitrary profiles of flow velocity 
and lateral force. It is important that they describe 
the FFF process starting from the moment immedi- 
ately after the probe injection. They are suitable 
both for the quantitative description of specific FFF 
systems and for the general qualitative analysis of 
various stages of the FFF process, including the 
influence of the specific forms of the flow velocity 
profile and the lateral force profile on this process. 

LINEAR FOCUSING FORCE AND PLANE POISEUILLE 

FLOW 

The most advantageous are IDA applications in 
focusing FFF [4]. In previous papers [6,7] the special 
case of the intrinsic hydrodynamic focusing force 
was considered. We now consider a simpler and 
more general case of the linear profile of a focusing 
force. This case corresponds closely to the focusing 
or hyperlayer FFF systems suggested elsewhere 
[13,14]. For a linear focusing force and plane 
Poiseuille flow, we have 

cp(x) = (Xf - x); u(x) = (1 - x2) (4) 

where - 1 < xf < 1 is the focusing point, which can 
differ for different fractions of particles. 

The theoretical description of IDA-FFF requires 
the calculation of transverse concentration profiles 
of particles at the given z and t [6,7]. First we 
consider conventional focusing FFF, i.e., a time- 
dependent scheme with a single probe injection [2]. 
We adopt the initial concentration distribution to be 
the same for all fractions, and to have a Gaussian 
shape along the z axis, being homogeneous along the 
x and y axes: 

CO(XOJO> = C0(xfd . exp 

. O(1 + x0). O(1 - x0) (5) 

where Co(xf.p) is the distribution function of particle 
fractions [6,7] and E is the characteristic axial width 
of the initial distribution (the case of a slab-like 
initial distribution can be treated analogously, 
giving similar results). Using eqns. 3b and 4 to 
express x0, z. in terms of x, z, t, factorizing the 
expression for z. thus obtained and substituting the 
results into eqns. 3a and 5, we finally obtain 

C(x,z,t) = Co(xf,p)-exp{- $.[expc) - l]i- 
t [x - Xl(ZJ)12. [x - x2(z.t)12 + - . 
P I 

. @[x,(t) - x] . O[x - x,(t)] (64 

1 - exp 

x&t) = Xf . ( 1. 
-i 

3 
1 -t exp 

( > 
-i 

z,(t) = (1 - x:>t + 2pxr .x,(t) 

x,(t)=xf-(1 +xf),exp 
( > 

-i ; 

(64 

Eqns. 6 give a clear description of the 
process. The concentration distribution 

focusing 
has left, 

xl(t), and right, x,(t), lateral boundaries due to the 
displacement of the particles away from the channel 
walls under the action of lateral force. The positions 
of these boundaries depend only on time, and 
approach xf asymptotically for t >> p. The total 
lateral width of the distribution, x,(t) - x,(t) = 2 
exp[ - (t/p)], decreases exponentially with time. The 
instantaneous distribution C(x,z,t = constant) has 
the shape of a curved crest within the lateral 
boundaries x,(t), x,(t), the maxima line z,(x,t) 
being determined by the parabolic equation [x - 
xl(z,t)] . [x - x2(z,t)] = 0 (see Fig. 1). At this line, as 
eqn. 6a shows, the concentration has a maximum 
value that depends only on time: C(xl,2,z,t) = 
Co(xf,p) . exp(t/p). The leading maximum point of 
the concentration crest lies at x = x,,,(t), z = z,(t). 
It advances along the channel with the maximum 

(6b) 



142 V. L. KONONENKO, J. K. SHIMKUS 

0.5 - 

3 
.d 3 0.4 T 

.F! 
m 

0.3 - 

0 50 100 150 200 250 300 350 400 

z in units of h 

Fig. 1. Maxima lines z,(x,t) (solid), the minimum-maximum lines x = x,(t) (dotted), and the left .x,(t) (dashed) and the right s,(t) 
(dot-dash) boundary lines of the instantaneous concentration distribution of particles in a plane Poiseuille flow and linear focusing 
lateral force, computed with eqns. 6 for two moments of time, t, = 280 and tz = 420: .Q = 0.4472, p = 100. 

0.34 0.30 0.4 0.42 
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Fig. 2. Series of lateral profiles of instantaneous concentration distribution of particles in a plane Poiseuille flow and linear focusing 
lateral force, computed with eqns. 6 for t = 280, xr = 0.4472, p = 100, z = (1) 240, (2) 250, (3) 256 and (4) 258, (5) z,(t), (6) 260.5 and (7) 
261.2. 
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flow velocity vll when t << p, with 
,, when t >> 

p. The shape of the transverse concentration profile 
C(x) = C(x,z = constant, t = constant), which is 
relevant for IDA-FFF, depends essentially on the 
relationship between z and z,,,(t). For z > z,(t) it has 
a single maximum at x = x,,,(t). For z < z&t) it has 
two maxima separated by a minimum at x = xm(t). 
These maxima are reached either at maxima lines 
x = xr(z,t), x = x2(z,t), or at the lateral bound- 
aries, depending on the relationship between xl,,(t) 
and xl,2(z,t) (see Figs. 1 and 2). Eqn. 6a also shows, 
that the concentration distribution has essentially 
different axial and lateral widths. All longitudinal 
profiles C(z) = C(x = constant, z,t = constant) 
are characterized by an original effective width 1, 
while the peaks of the lateral profiles C(x) have an 
effective width (41/p) [exp(2t/p) - I]-‘, which 
decreases sharply with time owing to the focusing. 

Next we consider the concentration profiles for 
the stationry scheme of analytical FFF [6], when 
a steady-state concentration distribution is main- 
tained at the channel entrance instead of a single 
probe injection. For the stationary case the variables 
x0 and z. entering eqn. 3a do not depend on time and 
are related to x and z by the second of eqns. 3b. 
Setting for definiteness z. = 0, and substituting 
eqns. 4 into eqns. 3, we obtain 

C(x,z> = co(xoJf,Pu)~ 

[ 

- Xf(X - x0) - $(x2 - xi, 
. exp 

1 - xf” 1. 
. @[x,2(z) - x] . O[x - x,1(z)] 

J = (1 - xf”) . In 
( > 

z + xt(x - X0) + 
f 

+ $(x2 - x”,) (7b) 
L 

The boundary trajectories x,r(z) and x,~(z), which 
determine the lateral width of the concentration 
distribution, are given by eqn. 7b for x0 = - 1 and 
x0 = 1, respectively. They approach xf asymptoti- 
cally as z tends to infinity. The maxima of the lateral 
concentration are reached at the boundaries (see 
Fig. 3), and are given by eqns. 7 for x0 = T 1, x = 
x,1> JGn2. 

USE OF INTEGRAL DOPPLER ANEMOMETER 

The integral Doppler anemometer can be used for 
the detection of particle fractions in both the 
stationary and non-stationary FFF regimes. The 
potential advantages of IDA fractionation are re- 
vealed most effectively under essentially non-equi- 
librium lateral conditions and in the stationary 
regime [6,7]. Under such conditions, as eqns. 7 and 
Fig. 3 show, the lateral concentration profile of each 
fraction has two peaks lying at x,~(z) and x&z). 
The positions of these peaks are influenced by the 
characteristic fraction parameters xf and p entering 
eqns. 7. The concentration peaks create the corre- 
sponding peaks in the integral Doppler spectrum, 
two for each fraction. The necessary equations 
connecting the shape and the peak positions of the 
IDA spectrum with the particle concentration pro- 
file and its peak positions were given previously 
[6,7]. They enable one to determine the xf and p 
values for each fraction from the measured IDA 
spectrum. The parameters xf and p are, in turn, 
connected with the appropriate physico-chemical 
parameters of particles, specified by the nature of the 
lateral field. 

The doublet structure of the fraction line in the 
IDA spectrum for xf # 0 may partly complicate the 
identification of fractions, This complication does 
not arise in the special case of a symmetrical profile 
of the focusing force, when xf = 0 for all the 
fractions, and, consequently, x,~(z) = - x,r(z) for 
each fraction. Here IDA detection enables the /J 
parameter of the fraction to be determined. 

Qualitatively the IDA-FFF system with a linear 
focusing force is similar to the systems with an 
intrinsic hydrodynamic focusing force implemented 
previously [6,7]. The basic theory and the general 
analytical approach developed in that work, to- 
gether with eqns. 7, can easily be used to obtain all 
the necessary characteristics of the present system. 
The concentration profiles and IDA spectra pre- 
sented previously [6,7] can be used as qualitative 
illustrations for the present case also. 

Apart from the stationary non-equilibrium sepa- 
ration scheme feasible only with IDA detection 
(IDA-FFF), the integral Doppler anemometer can 
be used in conventional FFF systems also, as a 
particle detector at the outlet of the fractionating 
channel. In this scheme the anemometer registers the 
IDA spectra continuously, in an accumulating and 
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Fig. 3. Series of lateral profiles of a stationary concentration distribution of particles in a plane Poiseuille flow and linear focusing lateral 

force, computed with eqns. 7 for xr = 0.4472, AI = 100 and z = (1) 10, (2) 100, (3) 180 and (4) 280. 

averaging mode. Using the measured IDA spec- FFF systems of the focusing type this lateral profile 

trum, the time-averaged lateral profile of the particle gives directly the equilibrium focusing positions (.a& 
concentration is obtained as described above. For of various fractions, because the registration is being 
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Fig. 4. Elution curve, computed with the kinematic approximation for a model mixture of four particle fractions of equal concentrations, 
passed through a focusing FFF system with a linear focusing force. Concentration at 2 = 0 is equal to unity. 
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done under laterally equilibrium conditions (the 
limiting case t >> p in eqns. 6 of the present model). 
These positions are connected with the appropriate 
physico-chemical parameters of the particles, allow- 
ing their determination for different fractions. In 
addition, one of the two laser beams of the differen- 
tial optical IDA set-up [5] can be directed to another 
photodetector for the parallel registration of the 
absorption or low-angle light scattering. This allows 
one to obtain the usual elution curve, or fractogram 
[2]. The use of two independent evaluation proce- 
dures may be desirable in some instances to increase 
the accuracy and reliability of fractionation. 

We illustrate this scheme by considering a model 
particle mixture of four fractions that have different 
focusing positions, (xf),2 = 0.2,0.4,0.6 and 0.8, and 
(for simplicity) the same values of p. Proceeding 
from typical experimental situations [2], we assume 
p = (&/PeL) = 100 and t 2 3~. According to 
eqns. 6c, at t = 3,~ = 300 the most “rapid” fraction 

(withxf = 6) 0 2 has its concentration maximum at 

&Xl = 276.2. This allows us to choose the detector 
position to be, say, zR = 280 (it should be noted that 
time is expressed in units of h/v ,,, and the coordinates 
x and z in units of h). Fig. 4 presents the usual FFF 
fractogram computed for this model mixture, using 
eqns. 6 with 1 = h and the other parameter values 
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listed above. The aim is to show the complex 
“convective” shape inherent in the elution curve, 
and to demonstrate the efficiency of the kinematic 
approach. The shape is strongly asymmetric, and 
has a long post-maximum tail due to the kinematic 
smearing of the initial Gaussian-type concentration 
distribution by the flow. The parameters of the 
fractions can be deduced from the measured posi- 
tions of the elution peaks using eqn. 6c for z,(t). 
However, this is not a simple procedure, because two 
parameters, xf and ,u, are involved, the latter de- 
scribing the influence of the relaxation effects on the 
peak position. 

Fig. 5 shows the time-averaged IDA spectrum of 
this model mixture, computed for the averaging 
interval t = 300-1500 and zR = 280. The calcula- 
tions used the time-averaged lateral concentration 
profile obtained from eqns. 6, and eqn. 6a from ref. 
7, which connects this profile with the IDA spectrum 
in the case of Poiseuille flow. Fig. 5 indicates that 
each fraction has the corresponding Doppler line at 
the frequency V;lfmax) = 1 - (x~):, which gives 
directly the focusing position (x&. The Doppler 
lines have the characteristic doublet structure dis- 
cussed above, which reflects the existence of two 
peaks of the lateral concentration for z < z,(t). The 
line width sharply decreases, and its height increases 

4 

3 

i I 

i 

0.5 0.6 0.7 0.0 0.9 1 

relative frequency, f/fmax 

Fig. 5. Time-averaged IDA spectrum, computed for a model suspension probe under the conditions in Fig. 4. 
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from the “rapid” to the “slow” fractions. This is a 
consequence of a longer travelling time of the latter, 
which means their better focusing. In real measure- 
ments the narrowing and the growth of the lines are 
limited by the diffusive broadening and by the 
instrumental width of the anemometer. However, as 
the estimates show and the measurements demon- 
strate [7], these lines remain very narrow for particles 
with radius a > 1 pm, ensuring the high resolution 
and accuracy of xf determination. 

IDA MEASUREMENTS OF LATERAL FORCE 

In the kinematic regime, when diffusion plays a 
minor role in particle motion, the particle concentra- 
tion distribution in FFF channels has cut-off type 
lateral boundaries. In the stationary situation, when 
the steady-state concentration distribution is main- 
tained at the channel inlet, the positions of the 
cut-off points along the channel are determined by 
the boundary lines x,i(z) and x,~(z). These lines are 
described in the general form by eqn. 6 in ref. 6 or by 
eqn. 8 below for arbitrary profiles of flow velocity 
and lateral force, and by eqn. 7b here and eqns. 4 in 
ref. 7 for some particular profiles. At these lines the 
lateral concentration of particles changes from 
nearly zero to some final or even maximum value, 
depending on the shape of the F(x) profile [6,7]. This 
concentration step procedures the corresponding 
peak or shoulder in the IDA spectrum [6,7]. Hence 
the position of x,,,(z) lines can be registered by 
measuring a series of IDA spectra along the channel. 
If specially prepared test particles with known 
specific parameters are used in such measurements, 
then the lateral field geometry and strength can be 
measured or calibrated by this procedure. The 
formal relationship follows from the particle tra- 
jectories (eqn. 3b). For the stationary case the 
boundary lines are the particle trajectories, which 
begin from the channel walls, x,, = 1 and x0 = - 1, 
at the inlet of a channel, z0 = 0: 

x.1 

z = 6VVll 
s 

u(x) 
----dx F(x) (8) 

%I 

Taking the x-derivatives of the left- and right-hand 
sides of eqn. 8 and replacing the former by the 
inverse function derivative, we obtain 

F(x) = 67c~av,, u(x) $+ (x) 
Z (9 

We used this procedure for the measurement of 
the real profile of the hydrodynamic focusing force 
in a flat channel. The point is that contrary to the 
theory [15], the position of the focusing plane of a 
particle depends on its relative size (a/h) [6,7]. We 
measured the concentration peak positions along 
the channel for various widths 2h = 40--200 pm, 
using human erythrocytes (U z 3.4 pm) and latex 
particles (a = 2 pm) as test particles. The experi- 
mental procedure is described elsewhere [16]. The 
typical IDA spectra registered and the correspond- 
ing lateral concentration profiles obtained, in addi- 
tion to the measured X,(Z) curves have also been 
presented previously [16]. The processing of these 
data according to eqn. 9 gives the hydrodynamic 
force profile in the range 0.2 < 1x1 < 0.8. The 
resultant profiles show a strong dependence on the 
flow velocity vii and the particle size a for (a/h) > 
0.05. With increase in a the focal positions &x, shift 
gradually to the centre of the channel, but for 
(a/h) < 0.1 the focusing remains non-central. Then, 
at (u/h) z 0.1 and vll z 1 cm/s the focal position 
changes fairly abruptly to become the central plane 
of a channel. 

DISCUSSION AND CONCLUSIONS 

The present and the previous papers [3,6,7] show 
the advantages and limitations, formulate the theo- 
retical and instrumental approaches to and outline 
the application areas of integral Doppler anemo- 
metry [5] in FFF. IDA permits analytical FFF, 
which can be done in two qualitatively different 
regimes. The first regime is stationary with time and 
non-equilibrium relative to the lateral field, and can 
be called non-equilibrium IDA fractionation or 
IDA-FFF [6,7]. In this regime the probe circulates 
in suspension inside a closed circuit, which includes 
the FFF channel. The detection of fractions is made 
via IDA registration of their non-equilibrium lateral 
concentration profiles in a channel. The lateral fields 
can be both of focusing ([6,7] and this work) and 
non-focusing [7] type. The flow velocity profiles can 
be either symmetrical (e.g., Poiseuille flow in a plane 
or in a circular cross-section channel) or of another 
type. The linear (Couette) velocity profile is especial- 
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ly convenient for IDA-FFF owing to the one-to-one 
correspondence between the axial velocity and the 
lateral position of a particle in a flow. The evident 
advantages of the non-equilibrium regime are the 
short channel length (up to several centimetres) and 
the short analysis time (up to tens of seconds) [6,7]. 
The instrumental complications compared with the 
conventional FFF scheme are the necessity for 
optical windows in the lateral field section of a 
channel, a more sofisticated optical set-up and more 
complex electronics. 

The second regime is the use of the integral 
Doppler anemometer as an ordinary detector in 
standard FFF scheme, especially in focusing FFF. 
Here the IDA registration gives immediately the 
equilibrium focal positions of fractions (see Fig. 5). 
This is very convenient for the precise determination 
of the appropriate parameters of particles. Second, it 
opens up the possibility for efficient calibration and 
metrology of FFF instruments. A further advantage 
of the IDA detector is the opportunity for parallel 
registration of the usual elution curve by measuring 
some optical characteristic of particles in a flow, 
such as absorption, low-angle light scattering or 
dynamic light scattering. Just as in the first IDA 
regime, these measurements require optical win- 
dows. However, in the second regime, such windows 
can be placed in the usual way, after the lateral field 
part of a channel (of course, without flow distor- 
tion). 

The optical set-up of the IDA instrument can be 
very simple and compact [5,17]. The light can be 
registered with an ordinary photodetector (photo- 
multiplier, photodiode, etc.). The signal processing 
unit requires a simple bandpass amplifier and a 
real-time spectrum analyser [5]. The latter can be 
successfully (and preferably) replaced by a computer 
supplied with a plug-in real-time Fourier transfor- 
mation unit. This computer can control the whole 
system operation and carry out complete data 
processing. 

For IDA detection, only the light scattered by the 
particles in a flow is necessary. However, it is 
hindered by another portion of scattered light, 
coming from inhomogeneities of the optical win- 
dows and from impurities and suspended particles 
adsorbed on their surfaces. The scattered light 
intensity depends strongly on the particle or in- 
homogeneity size [6,17]. In practice, this makes IDA 
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fractionation the most efficient with large particles 
(a >, 0.5 pm), where the hindering light scattering 
from the windows can be made comparatively small. 
This is the case in the analytical fractionation of 
biological cells. Steric FFF is also known to be 
efficient for the separation of l-100~pm particles [2], 
but it is sensitive to the particle size only. However, 
in bilogical applications it is often necessary to 
distinguish between subpopulations of cells with 
nearly the same size, but with different values of 
surface electric charge, electric dipole moment or 
magnetic moment (cell separation using the im- 
munologically attached magnetic markers). IDA- 
FFF based on an appropriate lateral force (electric, 
dielectrophoretic, magnetic) can be used for these 
purposes. The implementation of such systems 
requires additional research and development. 

SYMBOLS 

a 
C(xm) 

Co(w-4 

F,(x) and F. 
f 
h 

Pq,Pe, 

t 
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VII 
X 

Xf 

X1(0,X&) 

Xl&) 

X,l(Z>,XInZ(Z) 

Z 

ZldXJ> 

Znl(O 

ZR 

radius of a particle 
concentration of suspended particles 
in a flow 
distribution function of particle frac- 
tions 
lateral force and its magnitude 
frequency (Hz) 
half-width of a flat channel 
longitudinal and transverse Peclet 
numbers 
dimensionless time (in units of h/v,,) 
dimensionless flow velocity profile 
maximum flow velocity 
dimensionless lateral coordinate (in 
units of h) 
lateral position of the focusing point 
lateral boundaries of instantaneous 
non-stationary particle concentra- 
tion distribution 
minimum-maximum line of a parti- 
cle concentration distribution 
lateral boundaries of a stationary 
particle concentration distribution 
dimensionless coordinate along the 
flow (in units of h) 
maxima line of non-stationary con- 
centration distribution 
leading point of the maxima line 
position of a fraction detector 
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fluid viscosity 
unit step function 
characteristic separation parameter 
of a particle fraction 
dimensionless profile of lateral force 
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